Subvarieties of quotients of bounded symmetric domains

نویسندگان

چکیده

We present a new criterion for the complex hyperbolicity of non-compact quotient X bounded symmetric domain. For each $$p \ge 1$$ , this gives precise condition under which subvarieties $$V \subset X$$ with $$\dim V p$$ are general type, and is p-measure hyperbolic. Then, we give several applications related to ball quotients, or Siegel moduli space principally polarized abelian varieties. In case smooth compactifications obtain conditional upper bound on dimension exceptional locus, assuming Green–Griffiths–Lang conjecture holds true. As another example application, effective lower bounds levels l so that spaces genus g curves l-level structures type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular subvarieties of arithmetic quotients of bounded symmetric domains

A reductive Q-simple algebraic group G is of hermitian type, if the symmetric space D defined by G(R) is a hermitian symmetric space. A discrete subgroup Γ ⊂ G(Q) is arithmetic, if for some faithful rational representation ρ : G −→ GL(V ), and for some lattice VZ ⊂ VQ, Γ is commensurable with ρ−1(GL(VZ)). A non-compact hermitian symmetric space is holomorphically equivalent to a bounded symmetr...

متن کامل

On the Compactification of Arithmetically Defined Quotients of Bounded Symmetric Domains

In previous papers [13], [2], [16], [3], [ l l ] , the theory of automorphic functions for some classical discontinuous groups F, such as the Siegel or Hilbert-Siegel modular groups, acting on certain bounded symmetric domains X, has been developed through the construction of a natural compactification of X/T , which is a normal analytic space, projectively embeddable by means of automorphic fo...

متن کامل

Bounded Holomorphic Functions on Bounded Symmetric Domains

Let D be a bounded homogeneous domain in C , and let A denote the open unit disk. If z e D and /: D —► A is holomorphic, then ß/(z) is defined as the maximum ratio \Vz(f)x\/Hz(x, 3c)1/2 , where x is a nonzero vector in C and Hz is the Bergman metric on D . The number ßf(z) represents the maximum dilation of / at z . The set consisting of all ß/(z), for z e D and /: D —► A holomorphic, is known ...

متن کامل

Bloch Constants of Bounded Symmetric Domains

Let D1 and D2 be two irreducible bounded symmetric domains in the complex spaces V1 and V2 respectively. Let E be the Euclidean metric on V2 and h the Bergman metric on V1. The Bloch constant b(D1,D2) is defined to be the supremum of E(f ′(z)x, f ′(z)x) 1 2 /hz(x, x)1/2, taken over all the holomorphic functions f : D1 → D2 and z ∈ D1, and nonzero vectors x ∈ V1. We find the constants for all th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2021

ISSN: ['1432-1807', '0025-5831']

DOI: https://doi.org/10.1007/s00208-021-02295-3